Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS
نویسندگان
چکیده
منابع مشابه
Invariant Weighted Wiener Measures and Almost Sure Global Well-posedness for the Periodic Derivative Nls
In this paper we construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier-Lebesgue space FL(T) with s ≥ 1 2 , 2 < r < 4, (s − 1)r < −1 and scaling like H 1 2 (T), for small ǫ > 0. We also show the invari...
متن کاملGlobal Well-posedness of Nls-kdv Systems for Periodic Functions
We prove that the Cauchy problem of the Schrödinger-KortewegdeVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H1×H1. More precisely, we show that the nonresonant NLS-KdV system is globally well-posed for initial data in Hs(T) × Hs(T) with s > 11/13 and the resonant NLS-KdV system is globally wellposed with s > 8/9. The strategy is to app...
متن کاملGlobal Well-posedness for Cubic Nls with Nonlinear Damping
u(0) = u0(x), with given parameters λ ∈ R and σ > 0, the latter describing the strength of the dissipation within our model. We shall consider the physically relevant situation of d 6 3 spatial dimensions and assume that the dissipative nonlinearity is at least of the same order as the cubic one, i.e. p > 3. However, in dimension d = 3, we shall restrict ourselves to 3 6 p 6 5. In other words, ...
متن کاملGlobal Well-posedness and Scattering for Derivative Schrödinger Equation
In this paper we mainly study the Cauchy problem for the derivative nonlinear Schrödinger equation in d-dimension (d ≥ 2). We obtain some global well-posedness results with small initial data. The crucial ingredients are L e , L ∞,2 e type estimates, and inhomogeneous local smoothing estimate (L e estimate). As a by-product, the scattering results with small initial data are also obtained.
متن کاملGlobal Well-Posedness for Schrödinger Equations with Derivative
We prove that the 1D Schrödinger equation with derivative in the nonlinear term is globally well-posed in H s , for s > 2/3 for small L 2 data. The result follows from an application of the " I-method ". This method allows to define a modification of the energy norm H 1 that is " almost conserved " and can be used to perform an iteration argument. We also remark that the same argument can be us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Mathematical Society
سال: 2012
ISSN: 1435-9855
DOI: 10.4171/jems/333